Step of Proof: equiv_rel_functionality_wrt_iff
12,41
postcript
pdf
Inference at
*
1
1
I
of proof for Lemma
equiv
rel
functionality
wrt
iff
:
1.
T
: Type
2.
T'
: Type
3.
E
:
T
T
4.
E'
:
T'
T'
5.
T
=
T'
6.
x
,
y
:
T
.
E
(
x
,
y
)
E'
(
x
,
y
)
((
a
:
T
.
E
(
a
,
a
)) & (
a
,
b
:
T
.
E
(
a
,
b
)
E
(
b
,
a
)) & (
a
,
b
,
c
:
T
.
E
(
a
,
b
)
E
(
b
,
c
)
E
(
a
,
c
)))
((
a
:
T'
.
E'
(
a
,
a
))
& (
a
,
b
:
T'
.
E'
(
a
,
b
)
E'
(
b
,
a
))
& (
a
,
b
,
c
:
T'
.
E'
(
a
,
b
)
E'
(
b
,
c
)
E'
(
a
,
c
)))
latex
by
InteriorProof
((RW (HigherC (HypC 6)) 0)
CollapseTHENA ((Auto_aux (first_nat 1:n
CollapseTHENA ((Au
) ((first_nat 1:n),(first_nat 3:n)) (first_tok :t) inil_term)))
latex
C
1
:
C1:
((
a
:
T
.
E'
(
a
,
a
))
C1:
& (
a
,
b
:
T
.
E'
(
a
,
b
)
E'
(
b
,
a
))
C1:
& (
a
,
b
,
c
:
T
.
E'
(
a
,
b
)
E'
(
b
,
c
)
E'
(
a
,
c
)))
C1:
((
a
:
T'
.
E'
(
a
,
a
))
C1:
& (
a
,
b
:
T'
.
E'
(
a
,
b
)
E'
(
b
,
a
))
C1:
& (
a
,
b
,
c
:
T'
.
E'
(
a
,
b
)
E'
(
b
,
c
)
E'
(
a
,
c
)))
C
.
Definitions
x
.
t
(
x
)
,
P
Q
,
P
Q
,
P
Q
,
P
&
Q
,
t
T
,
x
(
s1
,
s2
)
,
x
:
A
.
B
(
x
)
,
,
{
T
}
,
x
(
s
)
Lemmas
implies
functionality
wrt
iff
,
all
functionality
wrt
iff
,
and
functionality
wrt
iff
,
iff
functionality
wrt
iff
origin